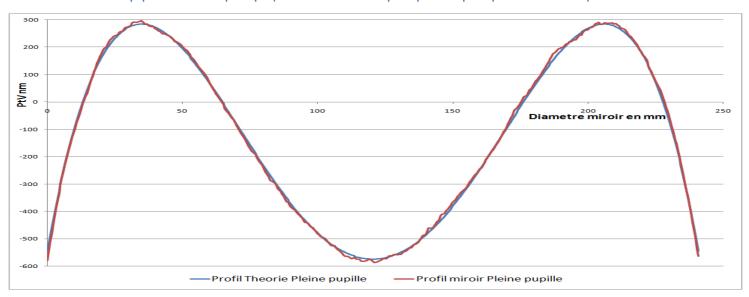

Résultats Parabole 241.5/991

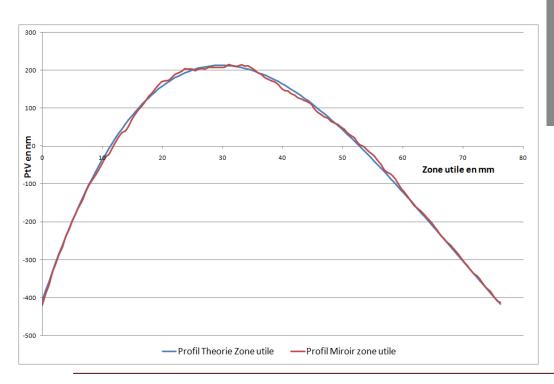
Ce rapport récapitule les différents éléments du front d'onde du miroir primaire. Ces mesures donnent les valeurs d'erreur sur le front d'onde Peak to Valley(PtV) et moyenné(Rms). L'instrument de mesure est un interféromètre de fizeau calé sur 635 nm. Celui-ci permet de déduire les erreurs de planéités sur 36 polynômes de Zernsike, la PSF et le ratio de Strehl.

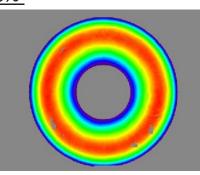
Mesures initiales : Miroir en BK7 de 36,3 mm d'epaisseur et de 250 mm de diamètre.


-	
Formule utilisé pour calculer le delta sphere-parabole [dZ] dZ = -((r^3]/(8Rc^3])	
Formule utilisé pour calculer une aberration Spherique (Zsph)	
Zsph rms = -((rmax^4)/[107,36*Rc^3))	
Diametre	241,5
Demi diametre	120,75
Rayon courbure	1982
dZ en μm	-2,82657E-05
Zsph Rms en mm	-0,000254329
Zsph Rms en nm	-254,3285437

Franges interférentielles

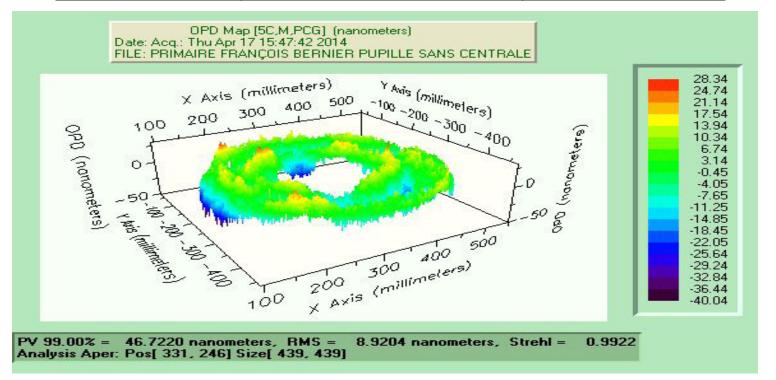
Profil Aberration sphérique (parabole) Pleine pupille 241.5mm


Profil Pleine pupille Aberration Sphérique (inclus les aberrations sphériques et asphériques de hauts ordre)



Report Summary			
Parameter	Value	Units	QC
PV 99.00%	888.3126	nanomet	
RMS	255.1956	nanomet	
4) Focus (norm)	0.3696	nanomet	
5) X Astig (norm)	0.0620	nanomet	
6) Y Astig (norm)	0.0381	nanomet	
7) X Coma (norm)	0.0049	nanomet	
8) Y Coma (norm)	-0.0050	nanomet	
9) Spherical (norm)	-256.2767	nanomet	

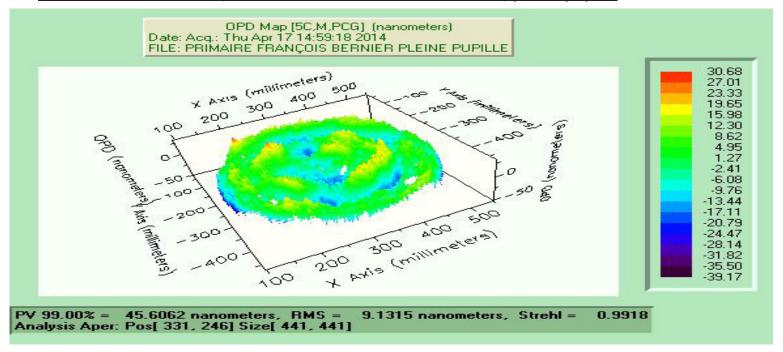
Rayon de Courbure 1982mm / Diamètre 241.5mm
Aberration Sphérique Théorique « -254nm rms »
Aberration Sphérique Obtenue « -256nm rms » Soit une
erreur de 2nm rms λ/


Profil Aberration sphérique (parabole) Obstruction centrale 36%

Le systéme optique du
Newton
Astrographe à une
obstruction
centrale de 36%
Le miroir a donc été
obstrué dans
sa partie centrale pour
simuler l'ombre du
secondaire de petit rayon
de 88mm

Aberrations Résiduelles (suppression Astig, COMA, TREFLE de bas ordre) Obstruction centrale 36%

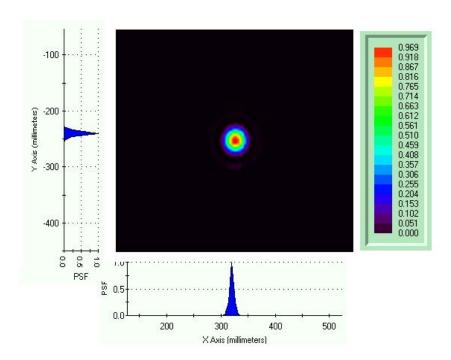
OPD (Optical Path Difference) Residues d'Aberrations


	OSA(norm)	NANOMETE	QC	Orde	RMS
1	Piston (norm)	-7.1297		0	
2	X Tilt (norm)	0.2455		1	8.9252
3	Y Tilt (norm)	0.1902		1	
4	X Astig (norm)	0.1981		2	13.0165
5	Focus (norm)	10.9181		2	
6	Y Astig (norm)	-0.0705		2	
7	X Trefoil (norm)	0.5087		3	12.9977
8	X Coma (norm)	0.0286		3	
9	Y Coma (norm)	0.1038		3	
10	Y Trefoil (norm)	0.2050		3	
11	X Tetrafoil (norm)	-1.3484		4	12.5245
12	X Astig (norm)	-3.1457		4	
13	Spherical (norm)	-11.6449		4	
14	Y Astig (norm)	-0.9795		4	
15	Y Tetrafoil (norm)	-0.1322		4	
16	X Pentafoil (norm	0.2208		5	12.3408
17	X Trefoil (norm)	0.4479		5	
18	X Coma (norm)	2.5298		5	
19	Y Coma (norm)	0.7748		5	
20	Y Trefoil (norm)	0.2610		5	
21	Y Pentafoil (norm	0.2504		5	
22	X Hexafoil (norm)	0.2899		6	10.9030
23	X Tetrafoil (norm)	0.2973		6	
24	X Astig (norm)	-0.3188		6	
25	Spherical (norm)	9.3414		6	
26	Y Astig (norm)	-0.1118		6	
27	Y Tetrafoil (norm)	-0.8545		6	
28	Y Hexafoil (norm)	0.7596		6	
29	X Heptafoll (norm	-0.1320	1	7	10.8018
30	X Pentafoil (norm	0.0964	1	7	
31	X Trefoil (norm)	-0.3923		7	
32	Y Coma (norm)	-0.8152	1	7	
33	Y Coma (norm)	-0.9006		7	
34	Y Trefoil (norm)	-0.5739		7	
35	Y Pentafoil (norm	-1.0110		7	
36	Y Heptafoil (norm	0.0144		7	
37	X Octafoil (norm)	0.2557	=	8	6.9214

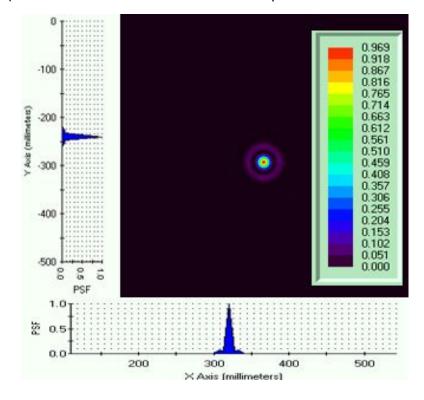
	Report Summary				
Parameter	Value	Units	QC		
PV 99.00%	46.7220	nanomet	λ/13		
RMS	8.9204	nanomet	λ/70		
4) X Astig (norm)	0.1981	nanomet			
5) Focus (norm)	10.9181	nanomet			
6) Y Astig (norm)	-0.0705	nanomet			
7) X Trefoil (norm)	0.5087	nanomet			
8) X Coma (norm)	0.0286	nanomet			
9) Y Coma (norm)	0.1038	nanomet			

Le Trèfle, la Coma et l'astig de bas ordre ont été supprimés volontairement car ils sont générés par le miroir sur son support de contrôle vertical (La matière se déforme très facilement selon sa position – prévoir un bon support dans son barillet)

Aberrations résiduelles λ/13 (46nm) PV et λ/70 (9nm) rms Ratio de Strehl= 0.992


Aberrations Résiduelles (suppression Astig, COMA, TREFLE de bas ordre) pleine pupille

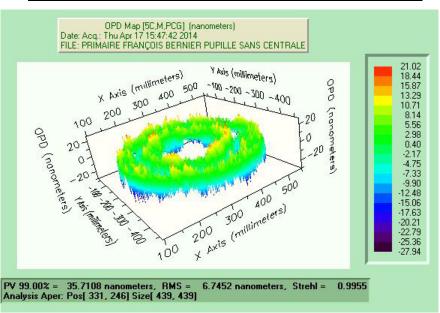
2) 3 \ 4 F 5) 6 \	Piston (norm) K Tilt (norm) Tilt (norm) Goods (norm) K Astig (norm) K Astig (norm) K Coma (norm)	0.0472 0.0083 0.0008 -0.0395 -0.0006 0.0063	1 1 1 1	9.1312
3 \\ 4 F 5 >	Y Tilt (norm) Focus (norm) K Astig (norm) Y Astig (norm) K Coma (norm)	0.0008 -0.0395 -0.0006 0.0063	1	9.1312
4 F	Focus (norm) K Astig (norm) Y Astig (norm) K Coma (norm)	-0.0395 -0.0006 0.0063	1	
5 3	C Astig (norm) Y Astig (norm) C Coma (norm)	-0.0006 0.0063	-	
B \	Y Astig (norm) K Coma (norm)	0.0063	2	
10000	(Coma (norm)		-	9.1311
7 >			2	
(2)		-0.0142	2	
8 1	Coma (norm)	0.0192	2	
9 5	Spherical (norm)	-0.1134	2	
10 >	(Trefoil (norm)	-0.0102	3	7.9686
11	Trefoil. (norm)	-0.0081	3	
12	(Astig (norm)	-3.1999	3	
13	Astig (norm)	-1.4336	3	
14	Coma (norm)	2.6101	3	
15	Coma (norm)	-0.5996	3	
16 5	Spherical (norm)	0.3967	3	
17	(Tetrafoil (norm)	-1.2037	4	7.0728
18	' Tetrafoil (norm)	-0.5193	4	
19	(Trefoil (norm)	0.4004	4	
20	Trefoil (norm)	0.2614	4	
21	(Astig (norm)	-0.2454	4	
22	Astig (norm)	-0.3385	4	
23	(Coma (norm)	-1.0509	4	
24	Coma (norm)	0.6001	4	
25 8	Spherical (norm)	-3.1072	4	
26	(Pentafoil (norm	0.1439	5	6.7874
27	Pentafoil (norm	0.3845	5	
28	(Tetrafoil (norm)	0.4203	5	
29	Tetrafoil (norm)	-0.8555	5	
30 >	(Trefoil (norm)	-0.4449	5	
31 \	Trefoil (norm)	-0.7148	5	
32 >	(Astig (norm)	0.1060	5	
33 \	Astig (norm)	0.0511	5	
34 >	Coma (norm)	0.2352	5	
35 \	Coma (norm)	0.0963	5	
36 5	Spherical (norm)	-1.4042	5	


	Report Su	mmary	
Parameter	Value	Units	QC
PV 99.00%	45.6062	nanomet	
RMS	9.1315	nanomet	
4) Focus (norm)	-0.0395	nanomet	
5) X Astig (norm)	-0.0006	nanomet	
6) Y Astig (norm)	0.0063	nanomet	
7) X Coma (norm)	-0.0142	nanomet	
8) Y Coma (norm)	0.0192	nanomet	
9) Spherical (norm)	-0.1134	nanomet	

PSF (point Spread Function) Pleine Pupille 241.5mm

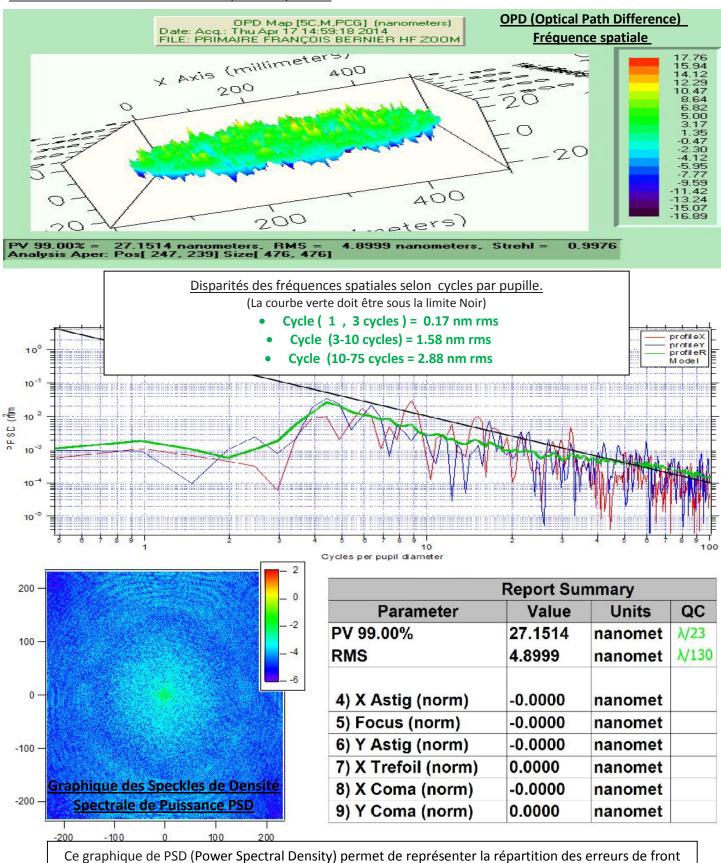
PSF (point Spread Function) obstruction centrale 36%

(Il a été obstrué de 36% la zone centrale pour simuler l'ombre du secondaire dans le système Newton)


Répartitions de défauts de Résidus d'Aberrations Sphérique de haut ordre (Suppression des aberrations Asphériques)

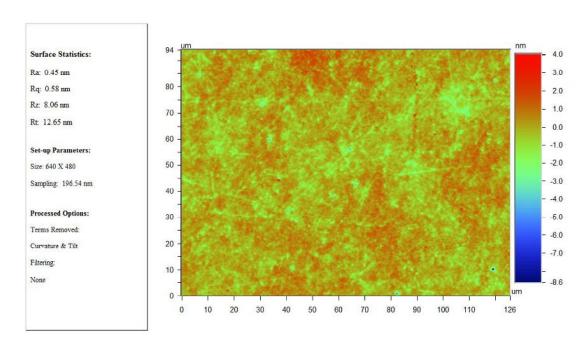
Ce sont les défauts d'aberrations sphériques des ordres élevés de Zernike. Il a été atteinte une précision de $\lambda/14(41\text{nm})$ PV et $\lambda/80(8\text{nm})$ rms

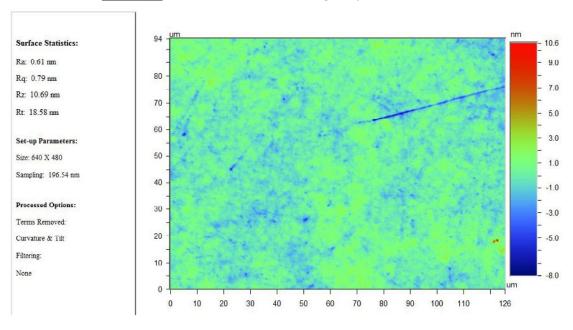
	OSA(norm)	NANOMETE	QC	Orde	RMS
1	Piston (norm)	-7.1271		0	
2	X Tilt (norm)	-0.0626		1	6.7454
3	Y Tilt (norm)	0.0107		1	
4	X Astig (norm)	0.0000		2	11.6290
5	Focus (norm)	10.8446	100	2	
6	Y Astig (norm)	0.0000		2	
7	X Trefoil (norm)	0.0000		3	11.6290
8	X Coma (norm)	0.0000		3	
9	Y Coma (norm)	0.0000		3	
10	Y Trefoil (norm)	0.0000		3	
11	X Tetrafoil (norm)	0.0000		4	11.7181
12	X Astig (norm)	0.0000		4	
13	Spherical (norm)	-11.4551		4	
14	Y Astig (norm)	0.0000		4	
15	Y Tetrafoil (norm)	0.0000		4	
16	X Pentafoil (norm	0.0000		5	11.7181
17	X Trefoil (norm)	0.0000		5	
18	X Coma (norm)	0.0000		5	
19	Y Coma (norm)	0.0000		5	
20	Y Trefoil (norm)	0.0000		5	
21	Y Pentafoil (norm	0.0000		5	
22	X Hexafoil (norm)	0.0000		6	10.3258
23	X Tetrafoil (norm)	0.0000		6	
24	X Astig (norm)	0.0000		6	
25	Spherical (norm)	9.2944		6	
26	Y Astig (norm)	0.0000		6	
27	Y Tetrafoil (norm)	0.0000		6	
28	Y Hexafoil (norm)	0.0000		6	
29	X Heptafoil (norm	0.0000		7	10.3258
30	X Pentafoil (norm	0.0000		7	
31	X Trefoil (norm)	0.0000		7	
32	Y Coma (norm)	0.0000		7	
33	Y Coma (norm)	0.0000		7	
34	Y Trefoil (norm)	0.0000		7	
35	Y Pentafoil (norm	0.0000		7	
36	Y Heptafoil (norm	0.0000		7	
37	X Octafoil (norm)	0.0000		8	6.1331


Report Summary				
Parameter	Value	Units	QC	
PV 99.00%	35.7108	nanomet	λ/18	
RMS	6.7452	nanomet	λ/99	
4) X Astig (norm)	-0.0000	nanomet		
5) Focus (norm)	10.8446	nanomet		
6) Y Astig (norm)	0.0000	nanomet		
7) X Trefoil (norm)	-0.0000	nanomet		
8) X Coma (norm)	0.0000	nanomet		
9) Y Coma (norm)	0.0000	nanomet		

OPD (Optical Path Difference) Residus d'Aberration Sphérique d'ordre élevé

Aberrations sphérique résiduelles de haut ordre λ/18 (35nm) PV et λ/99 (6nm) rms
Ratio de Strehl= 0.995

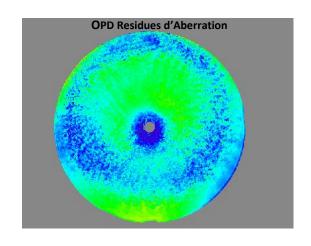

Résidus d'Aberrations des hautes fréquences spatiales


d'onde en fonction de leur fréquence spatiale sur la surface.

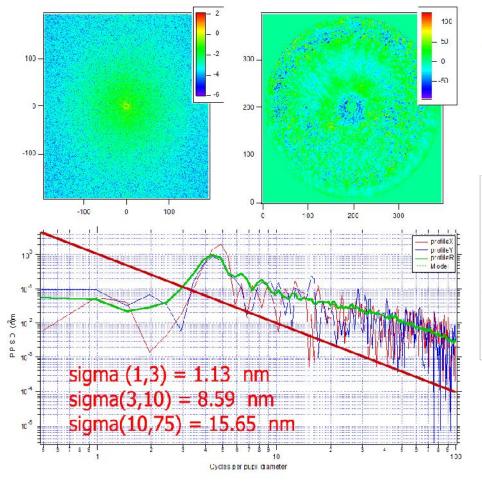
Mesures de rugosité de surface

<u>Data mesures à 40 mm du bord :</u> Ra :0.45nm Average, Rq : 0.58nm rms

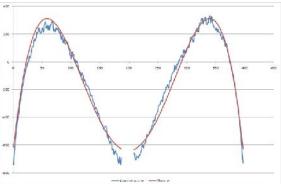
Data mesures à 30 mm du Centre : Ra :0.61nm Average, Rq : 0.79nm rms



Etat du miroir de la marque GSO (250 f/4) Avant Retouche


Avant Retouche du miroir

Planéité Aberration Résiduelle λ/3 PV (211nm) et λ/15rms (40nm)


Parameter	Value	Units	QC
PV 99.00%	199.0791	nanomet	λ/3
RMS	37.4159	nanomet	λ/17
4) Focus (norm)	0.5176	nanomet	
5) X Astig (norm)	-13.4542	nanomet	
6) Y Astig (norm)	-1.6513	nanomet	
7) X Coma (norm)	-3.6094	nanomet	
8) Y Coma (norm)	15.9813	nanomet	
9) Spherical (norm)	-0.4058	nanomet	

Fréquence spatiale λ/5 PV (131nm) et λ/28rms (21nm)

	Report Sur	mmary	
Parameter	Value	Units	QC
PV 99.00%	121.1024	nanomet	λ/5 PV
RMS	20.1328	nanomet	λ/30 rms
4) Focus (norm)	-0.0000	nanomet	
5) X Astig (norm)	-0.0000	nanomet	
6) Y Astig (norm)	-0.0000	nanomet	
7) X Coma (norm)	-0.0000	nanomet	
8) Y Coma (norm)	-0.0000	nanomet	
9) Spherical (norm)	-0.0000	nanomet	

Aberration Sphérique (Parabole) -288nm. Valeur Théorique -261nm rms pour un diamètre 245mm soit une erreur sur le Profil de 27nm.

Du bruit sur profil « bleu » est typique des hautes fréquences spatiale très élevées.

Conclusions:

Récapitulatif du travail effectué :

Le miroir d'arrivée présentait certains défauts importants (chanfrein grossier et irrégulier, état de surface piqué et planéité chaotique) Il a donc été re-douci, re-chanfreiné proprement (le diamètre utile à été passé de 247 à 241mm). Le polissage a été fini à la silice colloïdale sur support POIX en superfinition

Les mesures OPD ont été faites en pleine pupille et avec une obstruction centrale de 36% pour simuler l'ombre du secondaire dans le système Newton.

Résultats Optique :

Profil de l'aberration sphérique (Parabole) de -256nm pour une théorie à -254nm soit une erreur de 2 nm rms. Les défauts résiduels de front d'onde qui donnent la précision de la parabole sont de λ/13PV et λ/70rms. (Certains défauts sont engendrés par l'outil de support en 3 points lors du contrôle) La coma, le trèfle et l'Astigmatisme de bas ordre sont les 3 principales aberrations engendrés par ce type de support. Il a été vérifié par rotation du miroir sur son support qu'il était bien créé par le support et la gravité.

Un ratio de Strehl de **0.995** (valeur limite 1 pour un miroir parfait) et une PSF de **0.969** (tache d'airy) nous donnent également un miroir de très grande précision.

Les valeurs de fréquences spatiales de **4.9 nm** rms réparties dans différents cycles par pupille sont très correct et la PSD (Power Spectral Density) repartie correctement les speckles , permettent l'utilisation de ce miroir pour les applications dans le haut contraste.

Mesures finales : epaisseur de 35 mm , chanfrein de 4,25 mm